Keeping git submodules in sync with your branches

This is a quick trick for making working with git submodules more magic.

One day you might find that using git submodules is needed for your project. It’s probably not necessary for everyday hacking, but if you’re glue-ing things together, it can be quite useful. Puppet-Gluster uses this technique to easily include all the dependencies needed for a Puppet-Gluster+Vagrant automatic deployment.

If you’re a good hacker, you develop things in separate feature branches. Example:

cd code/projectdir/
git checkout -b feat/my-cool-feature
# hack hack hack
git add -p
# add stuff
git commit -m 'my cool new feature'
git push
# yay!

The problem arises if you git pull inside of a git submodule to update it to a particular commit. When you switch branches, the git submodule‘s branch doesn’t move along with you! Personally, I think this is a bug, but perhaps it’s not. In any case, here’s the fix:

add:

#!/bin/bash
exec git submodule update

to your:

<projectdir>/.git/hooks/post-checkout

and then run:

chmod u+x <projectdir>/.git/hooks/post-checkout

and you’re good to go! Here’s an example:

james@computer:~/code/puppet/puppet-gluster$ git checkout feat/yamldata
M vagrant/gluster/puppet/modules/puppet
Switched to branch 'feat/yamldata'
Submodule path 'vagrant/gluster/puppet/modules/puppet': checked out 'f139d0b7cfe6d55c0848d0d338e19fe640a961f2'
james@computer:~/code/puppet/puppet-gluster (feat/yamldata)$ git checkout master
M vagrant/gluster/puppet/modules/puppet
Switched to branch 'master'
Your branch is up-to-date with 'glusterforge/master'.
Submodule path 'vagrant/gluster/puppet/modules/puppet': checked out '07ec49d1f67a498b31b4f164678a76c464e129c4'
james@computer:~/code/puppet/puppet-gluster$ cat .git/hooks/post-checkout
#!/bin/bash
exec git submodule update
james@computer:~/code/puppet/puppet-gluster$

Hope that helps you out too! If someone knows of a use-case when you don’t want this functionality, please let me know! Many thanks to #git for helping me solve this issue!

Happy hacking,

James

 

Preserving your working directory in gnome-terminal

I use gnome-terminal for most of my hacking. In fact, I use it so much, that I’ll often have multiple tabs open for a particular project. Here’s my workflow:

  1. Control+Alt+t (My shortcut to open a new gnome-terminal window.)
  2. cd ~/code/some_cool_hack/ # directory of some cool hack
  3. Control-Shift-t (Shortcut to open a new gnome-terminal tab.)
  4. Hack, hack, hack…

The problem is that the new tab that I’ve created will have a $PWD of ~, instead of keeping the $PWD of ~/code/some_cool_hack/, which is the project I’m working on!

The solution is to add:

# including this ensures that new gnome-terminal tabs keep the parent `pwd` !
if [ -e /etc/profile.d/vte.sh ]; then
    . /etc/profile.d/vte.sh
fi

to your ~/.bashrc. Now everything works perfectly!

Many thanks to Matthias Clasen and Ray Strode for figuring this one out!

One side note: this used to be the default, but for some reason it broke around Fedora 19 or 20. Maybe it had to do with my fancy prompt, but everything is working great now.

Happy Hacking,

James

 

Show the exit status in your $PS1

As an update to my earlier article, a friend gave me an idea of how to make my $PS1 even better… First, the relevant part of my ~/.bashrc:

ps1_prompt() {
	local ps1_exit=$?

	if [ $ps1_exit -eq 0 ]; then
		#ps1_status=`echo -e "\[\033[32m\]"'\$'"\[\033[0m\]"`
		ps1_status='\$'
	else
		ps1_status=`echo -e "\[\033[1;31m\]"'\$'"\[\033[0m\]"`

	fi

	ps1_git=''
	if [ "$(__git_ps1 %s)" != '' -a "$(__git_ps1 %s)" != 'master' ]; then
		ps1_git=" (\[\033[32m\]"$(__git_ps1 "%s")"\[\033[0m\])"
	fi

	PS1="${debian_chroot:+($debian_chroot)}\u@\h:\[\033[01;34m\]\w\[\033[00m\]${ps1_git}${ps1_status} "
}

# preserve earlier PROMPT_COMMAND entries...
PROMPT_COMMAND="ps1_prompt;$PROMPT_COMMAND"

If you haven’t figured it out, the magic is that the trailing $ prompt gets coloured in red when the previous command exited with a non-zero value. Example:

james@computer:~$ cdmkdir /tmp/ttboj # yes, i built cdmkdir
james@computer:/tmp/ttboj$ false
james@computer:/tmp/ttboj$ echo ttboj
ttboj
james@computer:/tmp/ttboj$ ^C
james@computer:/tmp/ttboj$ true
james@computer:/tmp/ttboj$ cd ~/code/puppet/puppet-gluster/
james@computer:~/code/puppet/puppet-gluster$ # hack, hack, hack...

You can still:

$ echo $?
42

if you want more specifics about what the exact return code was, and of course you can edit the above ~/.bashrc snippet to match your needs.

Hopefully this will help you be more productive, I know it’s helping me!

Happy hacking,

James

Building base images for Vagrant with a Makefile

I needed a base image “box” for my Puppet-Gluster+Vagrant work. It would have been great if good boxes already existed, and even better if it were easy to build my own. As it turns out, I wasn’t able to satisfy either of these conditions, so I’ve had to build one myself! I’ve published all of my code, so that you can use these techniques and tools too!

Status quo:

Having an NIH problem is bad for your vision, and it’s best to benefit from existing tools before creating your own. I first tried using vagrant-cachier, and then veewee, and packer. Vagrant-cachier is a great tool, but it turned out not being very useful because there weren’t any base images available for download that met my needs. Veewee and packer can build those images, but they both failed in doing so for different reasons. Hopefully this situation will improve in the future.

Writing a script:

I started by hacking together a short shell script of commands for building base images. There wasn’t much programming involved as the process was fairly linear, but it was useful to figure out what needed getting done.

I decided to use the excellent virt-builder command to put together the base image. This is exactly what it’s good at doing! To install it on Fedora 20, you can run:

$ sudo yum install libguestfs-tools

It wasn’t available in Fedora 19, but after a lot of pain, I managed to build (mostly correct?) packages. I have posted them online if you are brave (or crazy?) enough to want them.

Using the right tool:

After building a few images, I realized that a shell script was the wrong tool, and that it was time for an upgrade. What was the right tool? GNU Make! After working on this for more hours than I’m ready to admit, I present to you, a lovingly crafted virtual machine base image (“box”) builder:

Makefile

The Makefile itself is quite compact. It uses a few shell scripts to do some of the customization, and builds a clean image in about ten minutes. To use it, just run make.

Customization:

At the moment, it builds x86_64, CentOS 6.5+ machines for vagrant-libvirt, but you can edit the Makefile to build a custom image of your choosing. I’ve gone out of my way to add an $(OUTPUT) variable to the Makefile so that your generated files get saved in /tmp/ or somewhere outside of your source tree.

Download the image:

If you’d like to download the image that I generated, it is being generously hosted by the Gluster community here. If you’re using the Vagrantfile from my Puppet-Gluster+Vagrant setup, then you don’t have to download it manually, this will happen automatically.

Open issues:

The biggest issue with the images is that SELinux gets disabled! You might be okay with this, but it’s actually quite unfortunate. It is disabled to avoid the SELinux relabelling that happens on first boot, as this overhead defeats the usefulness of a fast vagrant deployment. If you know of a way to fix this problem, please let me know!

Example output:

If you’d like to see this in action, but don’t want to run it yourself, here’s an example run:

$ date && time make && date
Mon Jan 20 10:57:35 EST 2014
Running templater...
Running virt-builder...
[   1.0] Downloading: http://libguestfs.org/download/builder/centos-6.xz
[   4.0] Planning how to build this image
[   4.0] Uncompressing
[  19.0] Resizing (using virt-resize) to expand the disk to 40.0G
[ 173.0] Opening the new disk
[ 181.0] Setting a random seed
[ 181.0] Setting root password
[ 181.0] Installing packages: screen vim-enhanced git wget file man tree nmap tcpdump htop lsof telnet mlocate bind-utils koan iftop yum-utils nc rsync nfs-utils sudo openssh-server openssh-clients
[ 212.0] Uploading: files/epel-release-6-8.noarch.rpm to /root/epel-release-6-8.noarch.rpm
[ 212.0] Uploading: files/puppetlabs-release-el-6.noarch.rpm to /root/puppetlabs-release-el-6.noarch.rpm
[ 212.0] Uploading: files/selinux to /etc/selinux/config
[ 212.0] Deleting: /.autorelabel
[ 212.0] Running: yum install -y /root/epel-release-6-8.noarch.rpm && rm -f /root/epel-release-6-8.noarch.rpm
[ 214.0] Running: yum install -y bash-completion moreutils
[ 235.0] Running: yum install -y /root/puppetlabs-release-el-6.noarch.rpm && rm -f /root/puppetlabs-release-el-6.noarch.rpm
[ 239.0] Running: yum install -y puppet
[ 254.0] Running: yum update -y
[ 375.0] Running: files/user.sh
[ 376.0] Running: files/ssh.sh
[ 376.0] Running: files/network.sh
[ 376.0] Running: files/cleanup.sh
[ 377.0] Finishing off
Output: /home/james/tmp/builder/gluster/builder.img
Output size: 40.0G
Output format: qcow2
Total usable space: 38.2G
Free space: 37.3G (97%)
Running convert...
Running tar...
./Vagrantfile
./metadata.json
./box.img

real	9m10.523s
user	2m23.282s
sys	0m37.109s
Mon Jan 20 11:06:46 EST 2014
$

If you have any other questions, please let me know!

Happy hacking,

James

PS: Be careful when writing Makefile‘s. They can be dangerous if used improperly, and in fact I once took out part of my lib/ directory by running one. Woops!

UPDATE: This technique now exists in it’s own repo here: https://github.com/purpleidea/vagrant-builder

Vagrant clustered SSH and ‘screen’

Some fun updates for vagrant hackers… I wanted to use the venerable clustered SSH (cssh) and screen with vagrant. I decided to expand on my vsftp script. First read:

Vagrant on Fedora with libvirt

and

Vagrant vsftp and other tricks

to get up to speed on the background information.

Vagrant screen:

First, a simple screen hack… I often use my vssh alias to quickly ssh into a machine, but I don’t want to have to waste time with sudo-ing to root and then running screen each time. Enter vscreen:

# vagrant screen
function vscreen {
	[ "$1" = '' ] || [ "$2" != '' ] && echo "Usage: vscreen <vm-name> - vagrant screen" 1>&2 && return 1
	wd=`pwd`		# save wd, then find the Vagrant project
	while [ "`pwd`" != '/' ] && [ ! -e "`pwd`/Vagrantfile" ] && [ ! -d "`pwd`/.vagrant/" ]; do
		#echo "pwd is `pwd`"
		cd ..
	done
	pwd=`pwd`
	cd $wd
	if [ ! -e "$pwd/Vagrantfile" ] || [ ! -d "$pwd/.vagrant/" ]; then
		echo 'Vagrant project not found!' 1>&2 && return 2
	fi

	d="$pwd/.ssh"
	f="$d/$1.config"
	h="$1"
	# hostname extraction from user@host pattern
	p=`expr index "$1" '@'`
	if [ $p -gt 0 ]; then
		let "l = ${#h} - $p"
		h=${h:$p:$l}
	fi

	# if mtime of $f is > than 5 minutes (5 * 60 seconds), re-generate...
	if [ `date -d "now - $(stat -c '%Y' "$f" 2> /dev/null) seconds" +%s` -gt 300 ]; then
		mkdir -p "$d"
		# we cache the lookup because this command is slow...
		vagrant ssh-config "$h" > "$f" || rm "$f"
	fi
	[ -e "$f" ] && ssh -t -F "$f" "$1" 'screen -xRR'
}

I usually run it this way:

$ vscreen root@machine

which logs in as root, to machine and gets me (back) into screen. This is almost identical to the vsftp script which I explained in an earlier blog post.

Vagrant cssh:

First you’ll need to install cssh. On my Fedora machine it’s as easy as:

# yum install -y clusterssh

I’ve been hacking a lot on Puppet-Gluster lately, and occasionally multi-machine hacking demands multi-machine key punching. Enter vcssh:


# vagrant cssh
function vcssh {
	[ "$1" = '' ] && echo "Usage: vcssh [options] [user@]<vm1>[ [user@]vm2[ [user@]vmN...]] - vagrant cssh" 1>&2 && return 1
	wd=`pwd`		# save wd, then find the Vagrant project
	while [ "`pwd`" != '/' ] && [ ! -e "`pwd`/Vagrantfile" ] && [ ! -d "`pwd`/.vagrant/" ]; do
		#echo "pwd is `pwd`"
		cd ..
	done
	pwd=`pwd`
	cd $wd
	if [ ! -e "$pwd/Vagrantfile" ] || [ ! -d "$pwd/.vagrant/" ]; then
		echo 'Vagrant project not found!' 1>&2 && return 2
	fi

	d="$pwd/.ssh"
	cssh="$d/cssh"
	cmd=''
	cat='cat '
	screen=''
	options=''

	multi='f'
	special=''
	for i in "$@"; do	# loop through the list of hosts and arguments!
		#echo $i

		if [ "$special" = 'debug' ]; then	# optional arg value...
			special=''
			if [ "$1" -ge 0 -o "$1" -le 4 ]; then
				cmd="$cmd $i"
				continue
			fi
		fi

		if [ "$multi" = 'y' ]; then	# get the value of the argument
			multi='n'
			cmd="$cmd '$i'"
			continue
		fi

		if [ "${i:0:1}" = '-' ]; then	# does argument start with: - ?

			# build a --screen option
			if [ "$i" = '--screen' ]; then
				screen=' -o RequestTTY=yes'
				cmd="$cmd --action 'screen -xRR'"
				continue
			fi

			if [ "$i" = '--debug' ]; then
				special='debug'
				cmd="$cmd $i"
				continue
			fi

			if [ "$i" = '--options' ]; then
				options=" $i"
				continue
			fi

			# NOTE: commented-out options are probably not useful...
			# match for key => value argument pairs
			if [ "$i" = '--action' -o "$i" = '-a' ] || \
			[ "$i" = '--autoclose' -o "$i" = '-A' ] || \
			#[ "$i" = '--cluster-file' -o "$i" = '-c' ] || \
			#[ "$i" = '--config-file' -o "$i" = '-C' ] || \
			#[ "$i" = '--evaluate' -o "$i" = '-e' ] || \
			[ "$i" = '--font' -o "$i" = '-f' ] || \
			#[ "$i" = '--master' -o "$i" = '-M' ] || \
			#[ "$i" = '--port' -o "$i" = '-p' ] || \
			#[ "$i" = '--tag-file' -o "$i" = '-c' ] || \
			[ "$i" = '--term-args' -o "$i" = '-t' ] || \
			[ "$i" = '--title' -o "$i" = '-T' ] || \
			[ "$i" = '--username' -o "$i" = '-l' ] ; then
				multi='y'	# loop around to get second part
				cmd="$cmd $i"
				continue
			else			# match single argument flags...
				cmd="$cmd $i"
				continue
			fi
		fi

		f="$d/$i.config"
		h="$i"
		# hostname extraction from user@host pattern
		p=`expr index "$i" '@'`
		if [ $p -gt 0 ]; then
			let "l = ${#h} - $p"
			h=${h:$p:$l}
		fi

		# if mtime of $f is > than 5 minutes (5 * 60 seconds), re-generate...
		if [ `date -d "now - $(stat -c '%Y' "$f" 2> /dev/null) seconds" +%s` -gt 300 ]; then
			mkdir -p "$d"
			# we cache the lookup because this command is slow...
			vagrant ssh-config "$h" > "$f" || rm "$f"
		fi

		if [ -e "$f" ]; then
			cmd="$cmd $i"
			cat="$cat $f"	# append config file to list
		fi
	done

	cat="$cat > $cssh"
	#echo $cat
	eval "$cat"			# generate combined config file

	#echo $cmd && return 1
	#[ -e "$cssh" ] && cssh --options "-F ${cssh}$options" $cmd
	# running: bash -c glues together --action 'foo --bar' type commands...
	[ -e "$cssh" ] && bash -c "cssh --options '-F ${cssh}${screen}$options' $cmd"
}

This can be called like this:

$ vcssh annex{1..4} -l root

or like this:

$ vcssh root@hostname foo user@bar james@machine --action 'pwd'

which, as you can see, passes cssh arguments through! Can you see any other special surprises in the code? Well, you can run vcssh like this too:

$ vcssh root@foo james@bar --screen

which will perform exactly as vscreen did above, but in cssh!

You’ll see that the vagrant ssh-config lookups are cached, so this will be speedy when it’s running hot, but expect a few seconds delay when you first run it. If you want a longer cache timeout, it’s easy to change yourself in the function.

I’ve uploaded the code here, so that you don’t have to copy+paste it from my blog!

Happy hacking,

James

Vagrant vsftp and other tricks

As I previously wrote, I’ve been busy with Vagrant on Fedora with libvirt, and have even been submitting, patches and issues! (This “closed” issue needs solving!) Here are some of the tricks that I’ve used while hacking away.

Default provider:

I should have mentioned this in my earlier article but I forgot: If you’re always using the same provider, you might want to set it as the default. In my case I’m using vagrant-libvirt. To do so, add the following to your .bashrc:

export VAGRANT_DEFAULT_PROVIDER=libvirt

This helps you avoid having to add --provider=libvirt to all of your vagrant commands.

Aliases:

All good hackers use shell (in my case bash) aliases to make their lives easier. I normally keep all my aliases in .bash_aliases, but I’ve grouped them together with some other vagrant related items in my .bashrc:

alias vp='vagrant provision'
alias vup='vagrant up'
alias vssh='vagrant ssh'
alias vdestroy='vagrant destroy'

Bash functions:

There are some things aliases just can’t do. For those situations, a bash function might be most appropriate. These go inside your .bashrc file. I’d like to share two with you:

Vagrant logging:

Sometimes it’s useful to get more information from the vagrant command that is running. To do this, you can set the VAGRANT_LOG environment variable to info, or debug.

function vlog {
	VAGRANT_LOG=info vagrant "$@" 2> vagrant.log
}

This is usually helpful for debugging a vagrant issue. When you use the vlog command, it works exactly as the normal vagrant command, but it spits out a vagrant.log logfile into the working directory.

Vagrant sftp:

Vagrant provides an ssh command, but it doesn’t offer an sftp command. The sftp tool is fantastically useful when you want to quickly push or pull a file over ssh. First I’ll show you the code so that you can practice reading bash:

# vagrant sftp
function vsftp {
	[ "$1" = '' ] || [ "$2" != '' ] && echo "Usage: vsftp  - vagrant sftp" 1>&2 && return 1
	wd=`pwd`		# save wd, then find the Vagrant project
	while [ "`pwd`" != '/' ] && [ ! -e "`pwd`/Vagrantfile" ] && [ ! -d "`pwd`/.vagrant/" ]; do
		#echo "pwd is `pwd`"
		cd ..
	done
	pwd=`pwd`
	cd $wd
	if [ ! -e "$pwd/Vagrantfile" ] || [ ! -d "$pwd/.vagrant/" ]; then
		echo 'Vagrant project not found!' 1>&2 && return 2
	fi

	d="$pwd/.ssh"
	f="$d/$1.config"

	# if mtime of $f is > than 5 minutes (5 * 60 seconds), re-generate...
	if [ `date -d "now - $(stat -c '%Y' "$f" 2> /dev/null) seconds" +%s` -gt 300 ]; then
		mkdir -p "$d"
		# we cache the lookup because this command is slow...
		vagrant ssh-config "$1" > "$f" || rm "$f"
	fi
	[ -e "$f" ] && sftp -F "$f" "$1"
}

This vsftp command will work from anywhere in the vagrant project root directory or deeper. It does this by first searching upwards until it gets to that directory. When it finds it, it creates a .ssh/ directory there, and stores the proper ssh_config stubs needed for sftp to find the machines. Then the sftp -F command runs, connecting you to your guest machine.

You’ll notice that the first time you connect takes longer than the second time. This is because the vsftp function caches the ssh_config file store operation. You might want to set a different timeout, or disable it altogether. I should also mention that this script searches for a Vagrantfile and .vagrant/ directory to identify the project root. If there is a more “correct” method, please let me know.

I’m particularly proud of this because it was a fun (and useful) hack. This function, and all the above .bashrc material is available here as an easy download.

NFS folder syncing/mounting:

The vagrant-libvirt provider supports one way folder “synchronization” with rsync, and NFS mounting if you want two-way synchronization. I would love if libvirt/vagrant-libvirt had support for real folder sharing via QEMU guest agent and/or 9p. Getting it to work wasn’t trivial. Here’s what I had to do:

Vagrantfile:

Define your “synced_folder” so that you add the :mount_options array:

config.vm.synced_folder "nfs/", "/tmp/nfs", :nfs => true, :mount_options => ['rw', 'vers=3', 'tcp']

When you specify anything in the :mount_options array, it erases all the defaults. The defaults are: vers=3,udp,rw. Obviously, choose your own directory paths! I’d rather see this use NFSv4, but it would have taken slightly more fighting. Please become a warrior today!

Firewall:

Firewalling is not automatic. To work around this, you’ll need to run the following commands before you use your NFS mount:

# systemctl restart nfs-server # this as root, the rest will prompt
$ firewall-cmd --permanent --zone public --add-service mountd
$ firewall-cmd --permanent --zone public --add-service rpc-bind
$ firewall-cmd --permanent --zone public --add-service nfs
$ firewall-cmd --reload

You should only have to do this once, but possibly each reboot. If you like, you can patch those commands to run at the top of your Vagrantfile. If you can help fix this issue permanently, the bug is here.

Sudo:

The use of sudo to automatically edit /etc/exports is a neat trick, but it can cause some problems:

  1. It is often not needed
  2. It annoyingly prompts you
  3. It can bork your stdin

You get internet karma from me if you can help permanently solve any of those three problems.

Package caching:

As part of my deployments, Puppet installs a lot of packages. Repeatedly hitting a public mirror isn’t a very friendly thing to do, it wastes bandwidth, and it’s slower than having the packages locally! Setting up a proper mirror is a nice solution, but it comes with a management overhead. There is really only one piece of software that manages repositories properly, but using pulp has its own overhead, and is beyond the scope of this article. Because we’re not using our own local mirror, this won’t allow you to work entirely offline, as the metadata still needs to get downloaded from the net.

Installation:

As an interim solution, we can use vagrant-cachier. This plugin adds synced_folder‘s to the apt/yum cache directories. Sneaky! Since this requires two-way sync, you’ll need to get NFS folder syncing/mounting working first. Luckily, I’ve already taught you that!

To pass the right options through to vagrant-cachier, you’ll need this patch. I’d recommend first installing the plugin with:

$ vagrant plugin install vagrant-cachier

and then patching your vagrant-cachier manually. On my machine, the file to patch is found at:

~/.vagrant.d/gems/gems/vagrant-cachier-0.5.0/lib/vagrant-cachier/provision_ext.rb

Vagrantfile:

Here’s what I put in my Vagrantfile:

# NOTE: this doesn't cache metadata, full offline operation not possible
config.cache.auto_detect = true
config.cache.enable :yum		# choose :yum or :apt
if not ARGV.include?('--no-parallel')	# when running in parallel,
	config.cache.scope = :machine	# use the per machine cache
end
config.cache.enable_nfs = true	# sets nfs => true on the synced_folder
# the nolock option is required, otherwise the NFSv3 client will try to
# access the NLM sideband protocol to lock files needed for /var/cache/
# all of this can be avoided by using NFSv4 everywhere. die NFSv3, die!
config.cache.mount_options = ['rw', 'vers=3', 'tcp', 'nolock']

Since multiple package managers operating on the same cache can cause locking issues, this plugin lets you decide if you want a shared cache for all machines, or if you want separate caches. I know that when I use the --no-parallel option it’s safe (enough) to use a common cache because Puppet does all the package installations, and they all happen during each of their first provisioning runs which are themselves sequential.

This isn’t perfect, it’s a hack, but hacks are fun, and in this case, very useful. If things really go wrong, it’s easy to rebuild everything! I still think a few sneaky bugs remain in vagrant-cachier with libvirt, so please find, report, and patch them if you can, although it might be NFS that’s responsible.

Puppet integration:

Integration with Puppet makes this all worthwhile. There are two scenarios:

  1. You’re using a puppetmaster, and you care about things like exported resources and multi-machine systems.
  2. You don’t have a puppetmaster, and you’re running standalone “single machine” code.

The correct answer is #1. Standalone Puppet code is bad for a few reasons:

  1. It neglects the multi-machine nature of servers, and software.
  2. You’re not able to use useful features like exported resources.
  3. It’s easy to (unknowingly) write code that won’t work with a puppetmaster.

If you’d like to see some code which was intentionally written to only work without a puppetmaster (and the puppetmaster friendly equivalent) have a look at my Pushing Puppet material.

There is one good reason for standalone Puppet code, and that is: bootstrapping. In particular, bootstrapping the Puppet server.

DNS:

You need some sort of working DNS setup for this to function properly. Whether that involves hacking up your /etc/hosts files, using one of the vagrant DNS plugins, or running dnsmasq/bind is up to you. I haven’t found an elegant solution yet, hopefully not telling you what I’ve done will push you to come up with something awesome!

The :puppet_server provisioner:

This is the vagrant (puppet agent) provisioner that lets you talk to a puppet server. Here’s my config:

vm.vm.provision :puppet_server do |puppet|
	puppet.puppet_server = 'puppet'
	puppet.options = '--test'    # see the output
end

I’ve added the --test option so that I can see the output go by in my console. I’ve also disabled the puppet service on boot in my base machine image, so that it doesn’t run before I get the chance to watch it. If your base image already has the puppet service running on boot, you can disable it with a shell provisioner. That’s it!

The :puppet provisioner:

This is the standalone vagrant (puppet apply) provisioner. It seems to get misused quite a lot! As I mentioned, I’m only using it to bootstrap my puppet server. That’s why it’s a useful provisioner. Here’s my config:

vm.vm.provision :puppet do |puppet|
	puppet.module_path = 'puppet/modules'
	puppet.manifests_path = 'puppet/manifests'
	puppet.manifest_file = 'site.pp'
	# custom fact
	puppet.facter = {
		'vagrant' => '1',
	}
end

The puppet/{modules,manifests} directories should exist in your project root. I keep the puppet/modules/ directory fresh with a make script that rsync’s code in from my git directories, but that’s purely a personal choice. I added the custom fact as an example. All that’s left is for this code to build a puppetmaster!

Building a puppetmaster:

Here’s my site.pp:

node puppet {	# puppetmaster

	class { '::puppet::server':
		pluginsync => true,	# do we want to enable pluginsync?
		storeconfigs => true,	# do we want to enable storeconfigs?
		autosign => ['*'],	# NOTE: this is a temporary solution
		#repo => true,		# automatic repos (DIY for now)
		start => true,
	}

	class { '::puppet::deploy':
		path => '/vagrant/puppet/',	# puppet folder is put here...
		backup => false,		# don't use puppet to backup...
	}
}

As you can see, I include two classes. The first one installs and configures the puppetmaster, puppetdb, and so on. The second class runs an rsync from the vagrant deployed /vagrant/puppet/ directory to the proper directories inside of /etc/puppet/ and wherever else is appropriate. Each time I want to push new puppet code, I run vp puppet and then vp <host> of whichever host I want to test. You can even combine the two commands into a one-liner with && if you’d like.

The puppet-puppet module:

This is the hairy part. I’ve always had an issue with this module. I recently ripped out support for a lot of the old puppet 0.24 era features, and I’ve only since tested it on the recent 3.x series. A lot has changed from version to version, so it has been hard to follow this and keep it sane. There are serious improvements that could be made to the code. In fact, I wouldn’t recommend it unless you’re okay hacking on Puppet code:

https://github.com/purpleidea/puppet-puppet

Most importantly:

This was a long article! I could have split it up into multiple posts, gotten more internet traffic karma, and would have seemed like a much more prolific blogger as a result, but I figured you’d prefer it all in one big lot, and without any suspense. Prove me right by leaving me a tip, and giving me your feedback.

Happy hacking!

James

PS: You’ll want to be able to follow along with everything in this article if you want to use the upcoming Puppet-Gluster+Vagrant infrastructure that I’ll be releasing.

PPS: Heh heh heh…

PPPS: Get it? Vagrant -> Oscar the Grouch -> Muppets -> Puppet

 

Easier strace of scripts with pidof -x

Here’s a one minute read, about a trick which I discovered today:

When running an strace, it’s common to do something like:

strace -p<pid>

Smarter hackers know that they can use some bash magic and do:

strace -p`pidof <process name>`

However, if you’re tracing a script named foo.py, this won’t work because the real process is the script’s interpreter, and pidof python, might return other unrelated python scripts.

strace -p`pidof foo.py` # won't work
[failure]
[user sifting through ps output for real pid]
[computer explodes]

The trick is to use the -x flag of pidof. This will let you pass in your script’s name, and pidof will take care of the rest:

strace -p`pidof -x foo.py` # works!
[user cheering]
[normal strace noise]

Awesome!

Happy hacking,

James